**Integral ln(x) - Math2.org**
http://math2.org/math/integrals/more/ln.htm

Webln(x) dx set u = ln(x), dv = dx then we find du = (1/x) dx, v = x substitute ln(x) dx = u dv and use integration by parts = uv - v du substitute u=ln(x), v=x, and du=(1/x)dx = ln(x) x - x (1/x) dx = ln(x) x - dx = ln(x) x - x + C = x ln(x) - x + C. Q.E.D.

**DA:** 37 **PA:** 21 **MOZ Rank:** 10