Keyword | CPC | PCC | Volume | Score | Length of keyword |
---|---|---|---|---|---|

find the derivative calculator | 0.06 | 0.8 | 8937 | 49 | 30 |

find | 0.01 | 0.7 | 4547 | 70 | 4 |

the | 1.06 | 0.7 | 852 | 96 | 3 |

derivative | 1.84 | 0.3 | 9491 | 80 | 10 |

calculator | 0.07 | 0.1 | 4653 | 80 | 10 |

Keyword | CPC | PCC | Volume | Score |
---|---|---|---|---|

find the derivative calculator | 0.06 | 0.1 | 8429 | 96 |

find the derivative calculator mathway | 0.36 | 0.8 | 5096 | 77 |

find the derivative calculator symbolab | 0.76 | 0.7 | 1575 | 53 |

find the derivative calculator dy/dx | 0.95 | 0.1 | 4691 | 34 |

find the derivative calculator with steps | 0.11 | 0.4 | 6054 | 15 |

find the derivative calculator at a point | 0.73 | 0.7 | 7069 | 98 |

find the second derivative calculator | 0.23 | 0.3 | 9206 | 67 |

find the nth derivative calculator | 0.07 | 0.8 | 7285 | 77 |

find the first derivative calculator | 0.14 | 1 | 1837 | 73 |

find the derivative of a function calculator | 0.02 | 0.4 | 1245 | 45 |

find the indicated derivative calculator | 0.55 | 0.3 | 8020 | 38 |

find the third derivative calculator | 1.14 | 0.1 | 4225 | 87 |

find the directional derivative calculator | 1.45 | 0.1 | 3540 | 88 |

find the fifth derivative calculator | 1.03 | 0.1 | 1665 | 22 |

Find the derivative of . Possible Answers: Correct answer: Explanation: This uses the simple Exponential Rule of derivatives. Mutiply by the value of the exponent to the function, then subtract 1 from the old exponent to make the new exponent. The formula is as follows: . Using our function,

f' (x) = lim (f (x+h) - f (x))/h. With the limit being the limit for h goes to 0. Finding the derivative of a function is called differentiation. Basically, what you do is calculate the slope of the line that goes through f at the points x and x+h. Because we take the limit for h to 0, these points will lie infinitesimally close together; and therefore, it is the slope of the function in the point x.